瞬间让WiFi信号拉满的神器
3.2. 多机器人避碰 在现实生活中,多机器人的应用场景主要是通过多个机器人的协作来提升系统的性能和效率,此时多智能体强化学习的关注重点主要在于机器人(智能体)之间的合作。
在移动机器人方面,自主避障导航是底层应用的关键技术,近几年通过强化学习的方法来学习单机器人导航策略这方面的工作成果比较多;而当环境中存在多个移动机器人同时向各自目标点移动的时候,需要进一步考虑机器人之间的相互避碰问题,这也是 MARL 在多机器人导航(multi-robot navigation)领域的主要研究问题。Jia Pan 教授团队 [13] 在控制多机器人避碰导航问题上使用了集中式学习和分布式执行的机制,在学习过程中机器人之间共享奖励、策略网络和值函数网络,通过共享的经验样本来引导相互之间达成隐式的协作机制。 但是,要想取得任何实质性进展,人们面临的最大问题之一就是如何更平等地支持和重视所有员工。当组织必须言行一致时,就会出现真正的挑战。 Ryan Wong说,这里缺少的环节可能是硬数据。作为人员分析平台Visier公司的首席执行官,他在商业智能和企业软件方面拥有20多年的经验,该公司致力于使用数字分析技术帮助组织领导者了解有关其业务的重要事实。 在多元化和包容性方面,组织领导者需要减少对表面指标的依赖。他解释说,很多组织看到的是错误的多元化数字。但他补充道,收集和分析多样性和包容性数据并不容易,尤其是在非法的情况下。例如,全球零售商H&M公司最近被处以3500万欧元的罚款,原因是该公司非法收集了其员工的个人隐私信息。
他说:“除了在这一过程耗费的成本和时间之外,我发现,真正的麻烦在于组织如何面对多样性和包容性数据中揭示的真相。很多组织无需深入研究数据或跟踪更有意义的指标,就可以轻松地依靠表面指标进行了解。对于组织领导者来说,通常的做法是忽略潜在的问题,同时改进表面指标,如招聘、留用或各种员工群体的流失,或者发表声明而不采取行动予以支持。数据可以在创造持久变革的道路上发挥重要作用,但其前提是组织的领导者必须根据数据揭示的信息采取行动。” 7. 避免在工具上滥情 在编程界,一个常见的轶事是粉刷自行车棚。它说的是一个程序员,或者一组程序员,担心的是车棚应该是什么颜色,而不是问一些重要的问题,比如车棚是否真的可以存放自行车。 当然,这个自行车棚也可以用电脑程序来代替。 在机器学习的世界里,你会听到关于R还是Python、TensorFlow还是PyTorch、书籍还是课程、数学还是code first(两者都有,记得这三位一体吧)、Spark还是Hadoop、Amazon Web Services还是谷歌云平台、VSCode还是Jupyter、Nvidia还是……的无休止的争论。 所有的比较都是有效的,但没有一个值得与对方争论。 你应该回答的真正问题是:用什么可以让我以最快、最可靠的方式建立我的想法? 一旦你问自己这个问题,你会发现其他人都在问自己同样的问题。 工程师的诅咒是从工具开始,然后寻找问题,而不是从问题开始,然后寻找工具,只有到了那个时候,如果没有合适的工具,才应该去构建它。 学习资源也是如此。数学、代码和数据的三大项,在你学习它的时候就是不变的,唯一重要的是你如何使用它。 不要忘记:许多问题可以在没有机器学习的情况下解决。 8. 你的想法是商品 不要把一个执行好想法的人与窃取你想法的人混为一谈。你的想法在别人手中比在你的头脑中更有价值。 作为一名工程师,你的角色不仅是建立自己的想法,而且还要与他人沟通,向他们展示如何从这些想法中获益。如果你缺乏这样的沟通能力,你应该与有这种能力的人合作,或者寻求培养这种能力。 在一个没人知道该相信什么的世界里,你可以通过做真实的自己来区分自己。诚实面对你做的东西所能提供的和你所不知道的。能够承认自己的无知是一种优势,而不是弱点。 好的技术总是胜利的,撒谎永远不会胜利。构建技术。不要撒谎。 9. 你的邻居、同事、同学和伙伴也在思考这个问题 你看到别人的进步而嫉妒吗?或者你把它看作是你能做到的事情的动力? 你对别人的成功的感觉就是你自己成功时候的感觉。 10. 不能贪 你应该寻求建立你运用三大项的技能,回答那些你想要提供服务的人的问题,但你不应该带着欲望这样做。欲望会诅咒你,让你永远过于严肃地看待未来,而不是享受你现在所拥有的。 对提高技能的渴望的治疗方法是培养对学习的热爱。 自学成才的机器学习工程师能够很快地学习利用数学、代码和数据力量所需的概念,但不能匆忙行事。他们明白学习任何有价值的技术都需要时间,如果是这样的话,还不如享受这个过程。 从一开始,你就是对自己的启蒙和教育负责的人。知道了这一点,你就应该选择那些无论你有什么样的运气都能成功的项目。这个项目是否满足了你的好奇心?它是否对你的技能构成挑战?它可以让你遵守这些戒律吗?如果是这样,就足够了。
最后,在沿着自己的道路行进的同时,自学成才的机器学习工程师在他们的脑海中一直保持着这样的印象: (编辑:宣城站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |