9.04亿网民真实数据曝光
什么是人工智能? 纵观人工智能的历史,其定义被不断重写。人工智能是一个概括性术语(这个概念始于50年代);机器学习是AI的子集,而深度学习又是机器学习的子集。 1985年,当我还是美国国家安全局的实习生时,人工智能也是一个非常热门的话题。在美国国家安全局,我甚至上了一节麻省理工关于人工智能专家系统的视频课程。专家系统在规则引擎中捕获专家的知识。规则引擎在金融和医疗保健等行业中有广泛的应用,最近更是用于事件处理,但是当数据发生变化时,规则的更新和维护会变得异常困难。机器学习的优势在于从数据中学习,并且可以提供数据驱动的概率预测。 在过去10年里,分析学发生了怎样的变化? 根据《哈佛商业评论》的托马斯•达文波特,分析技术过去十年里发生了翻天覆地的变化,跨商用服务器功能更强大、成本更低的分布式计算,流媒体分析、改进的机器学习技术,都使企业能够存储和分析更多的、不同类型的数据。 类似Apache Spark这样的技术使用迭代算法,通过在内存中跨迭代缓存数据并使用更轻量级的线程,进一步加速了分布式数据的并行处理。 图形处理单元(GPUs)加快了多核服务器的并行处理速度。GPU拥有一个由数千个更小、更高效的核心组成的大规模并行架构,这些核心专门设计用于同时处理多任务,而CPU由几个为顺序串行处理而优化的核心组成。就潜在的性能而言,从Cray -1进化到如今拥有大量GPU的集群,其性能提升大约是曾经世界上最快计算机的100万倍,而成本却只有其极小一部分。 什么是机器学习? 机器学习使用算法在数据中发现模式,然后使用一个能识别这些模式的模型对新的数据进行预测。 一般来说,机器学习可以分为三种类型:监督型、非监督型、介于两者之间。监督学习算法使用标记数据,而非监督学习算法在未标记数据中发现模式。半监督学习使用标记数据和未标记数据的混合。强化学习训练算法在反馈的基础上最大化奖励。 监督学习 监督算法使用标记数据,这些数据的输入和目标的结果或标签都会提供给算法。 监督学习也被称为预测建模或预测分析,因为你建立了一个能够做出预测的模型。预测建模的一些例子是分类和回归。分类根据已知项的已标记示例(例如,已知是否为欺诈的交易)来识别一个项属于哪个类别(例如,某交易是否为欺诈)。逻辑回归预测了一个概率——例如,欺诈的概率。线性回归预测一个数值——例如,欺诈的数量。 一些分类的例子包括:
逻辑回归(或其他算法)的一些例子包括:
So线性回归的一些例子包括:
这里还有其他的监督和非监督学习算法,我们不会一一介绍,但我们会详细介绍每类中的一个。 (编辑:宣城站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |